Photo Sensing Circuit &
Orientation Program: Operations
Manual

Team:

Trenton Black
Esmael Abdullah
Dakota Hanks
Fahad Esmael

Andres Rodrigues

Date: July 24™, 2018

Client: Dr. Michael Shafer
Instructor: Dr. Sarah Oman

Graduate Teaching Assistant: Amy Swartz

Table of Contents

I Lo o To (Ui A o] o [P TSP PO U RPR PP 3
A N0]] Y2 TSP 3
PAITS ... e e e e h e a e b b s aa s b saaesaa e e 3
CITCUIT COMPONENTS ...ttt ettt et bt s ettt s heea e et e sb e e bt e s s e b e e b e sbees s et e sb e eh e e st et e ebees s e s e abeebeeas e s e nbesaeententenbeeneenee 3

R O=1 1] o] =1 1[0 ¢ [F TP OSSO USRS PRPRPROR 5
Arduino: Solar Azimuth & Zenith CaliDration...........ccooiiiriiiiii et 5
Arduino: Watch Dog Timer CaliDrationooeoiieiiiiiecieeee ettt te ettt te s e e saa e et e sraesraesanesreeres 6
MATLAB: SIMUlation CaliDrationccccciviiiiiiiiiic et 7

@ o [=] =1 (o] o EO U TSP U RSO RSP USPPTURRURUPTPRPRROON 9
R =Y r= W o (o0t =Tt o TR 9
EXport Arduino Serial Data EXE FIIEoeeviiiecie ettt st e st e e et e et e e beenbeenseeateentesneenens 9
IMport .tXt Serial Data t0 MATLABo ottt ettt et e e et e e beebe e teesbeesseesteesseessesssesssesseesreesseeseenes 10

6 APPENDIX A: 3D Printed Circuit COmMPONENTt HOUSINGSccueriririeienieniieteriesieeieetesre sttt see s s e 12
7 APPENDIX B: CirCUIt COMPONENTS ...couuiiiiiiiieiteeieerieesie et et et eteetesseeeneesstesseesseesseesseesseesseesseenseenseenseenseenseensesnsesnses 16
8 APPENDIX C: AsSemblies & EXPIOEA VIBWS........ccviiiieiieieeieete ettt sttt ste e te e e e st taesbe e teeteenbeenbeenteenns 19

Figure 1: Size Comparison of Final Assembly to a Full-Size
Men’s basketball 9.5in in Diameter

1 Introduction

The following manual instructs proper set-up, operation and data processing into the simulation program for the
photo-orientation-circuit. The Calibration section will outline set-up protocol for establishing an origin with the
circuit for clear results translation by the simulation afterward. Operations discusses the physical execution of
the code inside of the Arduino, although all processes are run by a script, understanding code initiation,
watchdog timing intervals and data retrieval are essential. To conclude, directions on transferring the data from
Arduino into the MATLAB environment and how MATLAB indexes the data for reference will be provided.

2 Assembly

Here a brief description of the components required for assembly and instruction on assembly is provided. A
diagram of the final design with number labeling balloon that will provide reference in the text for clear part
identification and assembly.

Parts
Although all assembly parts are provided with description in figure 2. There are various materials and smaller
subsystems used in the manufacturing of the product are delivered below.

Circuit Components
e 22-gauge wire (A)
e 2x Solderable Bread Boards (B)
e 1x 10k Ohm Resistor (C)
e 2x 10uF Capacitors (D)
e 1x N-CP MOSTFET (E)
e 1x Micro USB (F)
e 1x 5.5mm Barrel Jack (G)

Simple Photo Circuit

1. Slip the Arduino Uno R3(2) into the housing(1) leading the computer jack through the square hole first
and settling it into place inside the housing which will align the barrel jack(G) power supply to a
secondary port.

2. Slip the wired ambient light sensors(4) into the 65° array(3), bottom first then apply pressure to the
upper portion providing a slight interference fit.

3. Before installing the array(3) lid into the Arduino housing(1) configure the position of all the wires(A)
fitting them to the Arduino serial connection pins, remove the Arduino(2) and place the wires securely
into the wire slotting board(15) and push the board into the array(3) for a snug fit.

4. Align the array(3) with the Arduino(2) housing by geometry and the placement of serial pins over the
Arduino and slide it into the housing making sure the bottom of the lid is securely mated to the top of
the Arduino Housing(1).

ITEM NO.

PART FILE NARE DESCRIPTION Qry.
1 urdune Howsing Arduino Hovsing 3x3x1.13 1
2 Arcduine UNO Ardvine Une R3 2.7x2.1x.5% i
3 Array3_é5 Solar Array at 650 3x3x.68 i
4 Ambient ight Sensor |Ambient Light Sensor .39x39x.07 5
3 pattery_Tray Battery Tray 4.4x3.92.0 1
:: Lithivm lon Polymer Battery 3.7V
& PEohatt 2Ah 2.76x) 94x22 ‘
7 BRDUINO MINI LIPO Adafruit L-Po Charger .
1JsB 1905 09340 70 .56
11 Solar Tray SolarTray 6.13x525 x .85 in 1
12 r\novniing_Covcrlzl 50102 %6531”22’:?5 igovet 1
13 Farel Tray Panel Tray 595 x5.58 x .1 2
ALLPOWERS 2 5W 5V S5AhK
V4 pelarFonelid] 5.91x5.12x.12 s
15 Wire Slot Yire Slot Gnd 2.73 x2.0x.08 1

Figure 2: Exploded Assembly with numerically identified parts

Battery & Solar Power Supply

10.

11.

12.
13.

14.

15.

Connect the Battery(6) to the Li-Po charger(7) using the pale white clip connection.

Now the solar tray(11) is ready to be slid into place using the lower edge of the battery tray(5), slide the
pieces together until the back of battery tray is securely against the closed end of the solar tray’s flange.
Place the solar panels(14) in the panel trays(13) and make sure to run the wire through the long holes
running the length of the tray.

The board of the Adafruit Li-Po charger(7) will have 4 holes labelled 5V, GND, and Batt. These holes
correspond to positive 5v output, ground, ground, and Voltage/ current input. Ensure that the positive
end of the solar cells connect to the hole labelled Batt and the negative side to the GND hole closest to
the Batt hole.

(NOTE: This may be difficult to do, utilizing a piece of string or stiff wire as a guide to pull it through
would be beneficial.)

Then connect a wire(A) from the 5V output of the li-po charger to a 5V input pin of the Arduino(2).
Also connect the GND of the li-po charger(7) to the -V or GND input of the Arduino(2).

Use a multimeter to test is current is flowing to the Arduino. An analog switch can be added before the
solar cells to manually stop charging. (NOTE. User will know that battery(6) is charging if the green led
ison.)

Now the solar tray(11) is ready to be slid into place using the lower edge of the battery tray(5), slide the
pieces together until the back of battery tray is securely against the closed end of the solar tray’s flange.
(Make sure all wires are safely inside the battery compartment)

Place the barrel jack from the Li-Po circuit in the round hole of the battery tray(5).

Slide the Arduino housing(1) into the battery tray(5) using the extruded runners to guide a secure fit
ensuring proper mating of the Arduino’s computer connection to the protected hole and the barrel
jack(G) power supply to coincident hole in the battery tray.

Now that the circuit is complete, a covering will be equipped over the entire assembly locking into
position the Solar Array(3), Arduino Housing(1), Battery Tray(5) and Solar Tray(11).

Finally, place the panel trays(13) into their slots on either side and return them to a resting (compressed)
position wherein the unit attains its smallest volume.

3 Calibration

The code set with a specific set of parameters for identifying each of the solar sensors equipped based on their
respective angular positions as a result it is important to align the device to a specific known orientation to
begin all proceeding measurement from to collect organized data the following instructions will provide the
proper procedure.

Arduino: Solar Azimuth & Zenith Calibration

Connect the Arduino Uno R3 to your computer using the USB connection.

Open the Arduino program interface command window.

Before, running the program, set the light sensing device on a level surface, using a flash light shine the
light directly at a corner between two sensors roughly 45° from horizontal as well as from the diagonal
sensors. (NOTE: Make sure at least 3 sensors are illuminated)

5

10.

As you move the light around the sensor, note the points at which the azimuth is zero and the Zenith is
maximum at 90°

Add or subtract from each reading until you are getting accurate reading the device.

Stop the run and clear the serial monitor, before running a real test adjust the pause inside the loop to increase or
decrease the amount of data computed.

Now that your program is calculating correctly, double check the onboard time dependent calculator, input your
time of day and quickly run-stop the program to receive a value. Double check the result on
https://www.esrl.noaa.gov/gmd/grad/solcalc/azel.html using their solar position calculator for validation.

Now you are ready for outdoor calibration.

Set the device on a level surface pointing the previously noted 0° sensor towards relative south, begin a quick run-
stop to collect a maximum of five data points.

If the results are within £10° then the calculator will be able to accurately track orientation by logging the position
of the sun in the background.

Arduino: Watch Dog Timer Calibration

The watchdog program, is intended to allow the Arduino to go into power-saving or a version of sleep-mode while
checking the inputs for any variations that would require the Arduino to wake. As such, the watchdog will be set to sleep
during night operations, and awake in the mornings, with checks every 8 seconds to make sure that no inputs go
unnoticed. This carries over into the daytime, since the sun does not move quickly, it was suggested by the team that 8
second intervals for gathering data would suffice to create an ‘orientation profile’. Here is how you can customize the
watch dog timer to your specifications the Code is shown in figure 4.

1.
2.

Open the Arduino sleep program.

At the beginning of the if statement after the delay change the 20 to the desired time to sleep. The value must
be in military time.

Next after the for loop change the value to the time you would like the Arduino to wake up.

Find the number of seconds between to two times that you had set then divide that number by 8.

Take the number that was calculated in step four and insert that number in the line that starts the for loop equal
or greater then I.

https://www.esrl.noaa.gov/gmd/grad/solcalc/azel.html

void myWatchdogEnable (const byte interval
{

MCUSR = 0; // reset various flags
WDTCSR |= 0b00011000; // see docs, set WDCE, WDE
WDTCSR = 0b01000000 | interval; // set WDIE, and appropriate delay

wdt_reset ()
set_sleep mode (SLEEP_MODE PWR_DOWN) ;
sleep mode () ; // now goes to Sleep and waits for the interrupt

}

void setup() {
// put your setup code here, to run once:
Serial.begin (9600);

}

void loop () {
Serial.print (hour);
Serial.print(":"):;
Serial.print (minute);
Serial.print(":"):
Serial.println(sec);
sec = sec + 1;
if (sec == 60)
{
minute = minute + 1:
sec = 04
}
if (minute == 60)
{
hour = hour + 1;
minute = 0;
}
delay (1000):
if (hour == 20)
{
for (int i=0; i <= 5399; i++) //sleeps for 12 hours
{

myWatchdogEnable (0b100001); // 8 seconds
}

hour = 8;

Figure 4: Watchdog operations algorithm

MATLAB: Simulation Calibration

Calibrating the MATLAB code to ensure proper function and no breaks in the code from faulty values is
relatively straightforward and simple. Create a list of values whose results are easily known and look for the
correct outputs and the resulting visual translation of the outputs into movement in the 3D plot. Figure 6,
represent the basic lines of code that will be observed and manipulated to perform the calibration.

1. Under ‘%Measured Zenith and Azimuth Angles’ there is an option to either have randomly generated values
between the operating bounds of 90-360° or to manually input desired values. Input a single value or an array
for the values [45 60 90 135 180 15 360]

2. Likewise, repeat step one for ‘%Calculated Zenith and Azimuth Angles’ [360 15 180 135 90 60 45]

3. No run script, the out puts thereof should correspond to rotations
(Insert Image of Command Line with outputs)

4, With movements of the 3D model such moving in the series of:
(Insert Image series of screen shots of 3D plot moving for each orientation)
5. Compare the results of the code to the results discussed in steps 4 & 5.

(First Loop
if j==k

fC0perating Bounds

a = 0;
bz = 50;
ba = 360;

fMeasured Zenith and Azimuth angles
Zm = (kz-a).*rand(l,l) + a:
Am = [(ba-a).*rand(l,1l}) + a:

£Zm = 90;
Ehm = 07
(Calculated Zenith and Azimuth angles
Za = (bz-a).*rand(l,l) + a:
ha = [(ba-a).*rand(l,1l} + a:
£Za = 90;
(La = 45;
end

(411 other loops
if j<k

fMeasured Zenith and Azimuth angles

Zm = Za;
Am = RAa;
%Calculated Zenith and Azimuth angles

Za = (bz-a).*rand(l,l) + a:
ha = [(ba-a).*rand(l,l}) + a:
end

Figure 5: MATLAB calibration code for manual inputs

4 Operation

It is important to know how to turn the device on, how the code sequence will operate while circulating inside of the loop,
and what problems may occur during operation that will cause errors and breaks inside the loops. As such the built-in
timing function Watchdog, will operate as a power saving mode throughout the day to conserve power and take
measurements are a rate consistent with collecting enough information for a profile cataloguing the orientation of the
object as it is rotated about the X, Y and Z axis.

il
|

Figure 6: Solar Battery charging and bypass circuit schematic

5 Data Processing

Although, the way the device currently transmits data is not technically a form of collection, the data will be compiled via
the serial monitor of the Arduino. The data output is tailored to address the required inputs of the simulation program,
such that once the data from the serial monitor is exported via .txt file and uploaded to MATLAB the information
provided can be directly processed by MATLAB.

Export Arduino Serial Data .txt File

1. Runthe Arduino program and open the serial monitor.
2. Terminate the program while leaving the serial monitor open.
3. Copy the data that is inside the serial monitor and paste it into a txt file.

Import .txt Serial Data to MATLAB

1. Verify your file name string inside of the apostrophe for variable ‘Filename’. Shown in Figure 7.
2. Make sure the .txt file is in the same folder location as the Complete Animation Program.

$Inport Arduino ..txt Data
Filename = 'Test Data.txt's
Data = import (Filename);
20rigin

%(Data Counter

k = numel (Data) ;
i= k+1:

n=1;

while j > 0
Figure 7: Import data .txt file into MATLAB pre-delimited from the Arduino Serial monitor

3. Make sure the solar data corresponding to the solar Azimuth and Zenith is being properly indexed from data the
first row is zenith data and the second is azimuth data. Designated by the first number in parenthesis (1,#) &
(2,#) illustrated by Figure 8.

while j > 0O

FArduino Data LArrays
Za = Data(l,l:k)|:
Aa = Data(2,1:k):

Figure 8: Data array indexs outside of If
statements

10

The second if statement references the information on the solar calculator to build an initial profile of the
orientation from the sun, since it is assumed the sun moves very slowly through the sky with respect to several

seconds it is only used once for comparison. Designated by the difference in suffix of (m & a) measured and

actual in figure 9.

F5econd Loop

if

j==

FCperating Bounds

a

bz =

ba

o
890;
360;

FHMeasured Zenith and Azimuth angles

FZm = (bz-a).*rand(l,1l) + ar

FAm = (ba-a).*rand(l,1) + a:

Zm = Zm{l,1):

Am = Ami{l,1):

FCalculated Zenith and Azimuth angles
%Za = (bz-a).*rand(l,1) + a:

3ha = (ba-a).*rand(l,1l) + a:

Za = Zal(l,1):

Ba = Ra(l,1):

end

Figure 9: The final IF statement will run through the rest
of the data points changing to the new orientation and
saving the previous using single rowed data arrays.

The third if statement is different from the first and second since it begins to save the previous orientation as
the second vector that will be used to compare the new orientation and determine the movement that has
elapsed. As shown in Figure 10. the counter (n) increases by one each time thus moving to the next data column
on the next iteration of the while loop.

%011 other loops

if j<k

FHMeasured Zenith and Lzimuth angles
Zm = Za;

Lm = Ra;

iCalculated Zenith and Azimuth angles

3Za = (bz-a).*rand(l,1l) + ar
%tha = (ba-a).*rand(l,1) + a:
Za = Za(l,n+1);
ha = Ra(l,n+l);

Figure 10:Calling data from outside of the data index using
the variable names from the original program.

11

1.36

10.75 |

0.06
0.21
0.25
0.36

2

Figure 11: Ambient Light Sensor Array m

=)
@
0.08 -
0.10
2.35
1.3%

2 2.94
N
3 SECTION aa™

SCALE 1:1.5

6 APPENDIX A: 3D Printed Circuit Component Housings

3.10

0.48

UMIESS QINERYEESPECIHED:
DMENEDHE AFE N NCHES
ICHERANCES:

DRAN

14 PIACE DECAAI 206

B ITRRRIT Grow TR
OIMPALCHG PIE

”IE"ER - Filament

en

CORENIS:

0D 401 3TAI} DRI

ounting plate.

A

TIWLE:
Solar Array at 65 Degrees

3x3x.68

SEE DWG. NO.
A P.aAnay (85)

SCALE:2:1 WEIGHT:

1

SHEET 1 OF 17

.25

0.13
0.10

0.15
0.28
0.72

2

Figure 12: Arduino Housing

1.00

UNIESS QINERWEE SPECHED:
DRENEING ARE 1N INCHES
ICHERANCES:

DRawN
1 PIACE DECkaI 206

NIEPRE CEOMETT
11 ERANCIN PER:
FRAITETR

PLA - Filament
g

COMMENIS:

00 4D1 341 DEAN NG

12

Dl
TLE:
Arduino Housing
3x3x1.13
SZE DWG. NO. REV
A P3CPUHousing
SCALE 1:1 WEIGHT: SHEET 3 OF 17

1

0.16

| 2.80

0.30
0.45

| 2.52

0.28

0.20

L 043

3.14
3.20
3.30
378
4.00

2

ot @
= -
o —
Yo
[¥e]
) B
\el
N/
Allinternal Fillets set to
.05in Radius at stress
concentrations L?/J.
a
Lo
e
o
e
UNIESS CIMERWEESPECIHIED: ek

DIIENEINE AFE IN INCHES

IDIERANCES:
[T
W@ PIACE DECkaAI 306

MIERPRE CEOMEITT
I ERANTNS PER:
FABIETK

PLA - Filament

PHER

COMMENIS:

0D 4D13TAIF DEA NG

TITLE: A

Battery Tray
4.4:3.9x2.0
SZE DWG. NO. REV
A P.2 Battery Tray
SCALE: 1:2 WEIGHT: SHEET2 OF 17,

1

Figure 13: Battery Tray, for storing and housing the battery and Li-Po charger including

the facilitation of Sub-Assemblies.

2

Figure 14: Simple Covering for Battery Tray and Photo-Sensory circuit.

4.00

0.05
0.10
0.50
0.70
3.24

UNIESS QIMERWEESPECIHED: HAE
DG WG ARE 1N INCHES
ICIERANCES:

oRasN
1 PIACE DECKIAI 106

MIETPREl CEOMEITT.
by
IQIERANCN PER: COMMENS:

“BEA - Flament

HEN

00 4D1 T4} DA ING

13

2 020

0.10

TITLE: A

Clear Cover

4.4x3.92.1
SZE DWG. NO. REV
A P7 Cover
SCALE 12 WEIGHT: SHEET 7 OF 17

1

3.97
0.16

W

S

1
@00 o] v @
QNN R~ K
olo|lo|o|o| o o

|

2

SHCIHED: W
DRARE NG ATE I IS0 TS
[CITUStE

DEa
W MACE DECKAI 205

PREEPEE CACAMITE
101 AN NC FE:

Rl
PLA - Filament
FNES

COMATIS:

26 w01 3C 1 Bt ieD

ik

TILE
Solar Tray

6.13 x5.25 x.861in
SZE DWG. NO.

A P.5 Solar Tray
SCALE: 122 WEIGHT-

1

REV

SHEET 5 OF 17

Figure 15: Solar Tray, will attach to the bottom of the Battery tray and will hold and
facilitate connection between solar panels and Li-Po charger as well as low volume Panel

storage.

2

1.56

3.98
400
4.18
426

2

UNIESS QINERWEE SPECIHIED:
DKENEIINE ARE I NS HES
ICHERANCES:

oRaw N
10 FIACE DECKIAI 106

NIESPREl CEOMEITT
[
101ERANENG PER: COmMMENIS:

UL
PLA - Filament
e

00 4D1 A DEA T

TITLE:

Solar & Battery Tray Cover
426 x1.56 x3.01In

SZE DWG. NO. REV
A P4Tray Cover
SCALE 12 WEIGHT: SHEET 4 OF 17

1

Figure 16: Solar Covering, Fixes the Position of the Photo-Sensing Circuitry housing,

Battery Tray and Solar Tray.

14

=)
5.95 S
0.60
1| 025
<5 O «©
o ol ©
UN|ESS CIPERWEESPECIHIED: HAME DRIE

DRIESEINE ATE N INCHES
ICIERANCES:

DRaMN
1M PIACE DECKIAI 106

MIETSREl CEOWIETT
IC1ERANCIC PER:

FAIERR
‘E"LA - Filament

COMMENIS:

00 4D1 T4 DEANINT

2

5.65
5.58

0.43

TLE:
Panel Tray

5.95x5.58 x.1

SZE DWG. NO.
A P.6 Panel Tray

REV

SCALE: 1:2 WEIGHT: SHEET 6 OF 17,

1

Figure 17: Panel Tray, these will hold the Solar Panels for easy accessibility and between

storage and deployment.

2

0.08

2.73

LHLBS OTHIRWKES PECIFED: wesmE DAIE
DREUTIO NS ATE M T IS
10 1EFANCHS:

Drawn
MO NACEDICHAL 205

MIETFTE CHCOmE IFE.
OVERANC M P

DN

COmmiNIS:

e

20 401 ICAIT DRAY WS

2

Figure 18: Universal Wire slotter, making good serial connections to the Arduino from
the Ambient Light Sensors is difficult, there for you can preset the position of your wires
from the Ambient Light sensors for simple plug-n-play usage.

15

me
Wire Slot Grid
2.73x2.0x.08

SZE DWG. NO REV

A P18 Wire Slot

SCALE 111 WEIGHT: SHEET3 OF 18

1

7 APPENDIX B: Circuit Components
2

at g
B == B
o
o
2.70 LNLESS OTHERWS ESPECIFIED: wwat | oae
A DRAENG IS 4 FE W INDHES A

IR NCES: AL .

WO MACE DECMAT 206 Do ArdUlno Llno Rs

MIERPREL CEOWEITT 2.7x2.1x.59

1GHERANTIE PER:

S— COMMENIS:) .

Model by Luis Entique | SEE DWG. NO. REV
NEn grabead.comflibraryf A P.18 Arduino
ardvino-uno-18
D2 W21 SCAIE DRAW NS SCALE: 1:1 WEIGHT: SHEET 18 OF 24
Figure 20: Arduino Uno R3
UNLESS OTHEKWRES PECFED: et | oA
A DR DEINE AT M TS A

IONETA TS TITLE: .
A AN DA Ambient Light Sensor
M SO T 39x.39x.07
ICHE AN NE 1T e
e SEE DWG. NO. REV
s A P2 Light Sensor

SCALE: 51 WEIGHT SHEET 13 OF 24

DG M SCAIE DRAW NS

Figure 19: Sparkfun Ambient Light Sensor Breakout (x5)

16

A 0l NI N
(=} — - s
1.83 ~ 5| g o
7
(S
1.94
0.97
\

0b W2
s

vl 0.12

2

UNLESS OTHERWIES P ECFED:
DM ERE I A0 W S a kS
[EATAE

g ACE DIChAS) 205

IR CEOFI T
IR RANT N ET:

IR

Comming:

DG M SEAIE DRAWNS

Figure 21: Lithium-lon Polymer Battery 3.7V at 2Ah

l 0.16
0.56

0.90
0.3

2
Figure 22: Adafruit Li-Po Charger

[

0.16

2.76

A

TTLE:
Lithium lon Polymer Battery

3.7V 2Ah
2.76x1.94x.22
O

Two of these | SZE DWG. N

Components A | P.17 Li-Po Battery

existin the
Assembly | SCALE 1 WEIGHT

1

UNLESS OTHERGNES) ECFED:
DR ERE KIS A 0L I E £
[ENTAE

G AT DICHRAT 205

WIEE2R | CEOvi| T
IR RANT WE 1T

[

wemE DA

TITLE:

SHEET 17 OF 24

Adafruit Li-Po Charger

0.93x0.7x0.56

CoOMmias:

FBIETR

E

DG 1 SCAIT DRI

17

SZE [DWG. NO

REV

A P15 L-Po Charger

SCALE: 2.1 WEIGHT:

1

SHEET 15 OF 24

2

Figure 23: AIIPOWERS 2.5W — 5V at .5Ah solar Panels (x2)

o

0.12

591

UNLESS OTHEKWRES P ECFED:
DM ERE RS A0 W Tk

[Tt

oRAM
G PACE DECRat) 206
NIEE9RE | CECWFIFT
ICHERANE NE T
COwmiNs:

FAIETRI

DS SEAIL DRAW NG

18

TTLE:

ALLPOWERS 2.5W 5V 5Ah
5.91x5.12x.12

SEE [DWG. NO.

REV

A P.12 Solar Panel 2

SCALE: 112 WEIGHT

1

SHEET 12 OF 24

8 APPENDIX C: Assemblies & Exploded Views

Figure 24: Complete assembly with Solar Panels Deployed from Solar Tray.

Figure 25: Exploded view of complete assembly.

19

